Основные компоненты и разновидности компьютерных сетей. Основные топологии локальных сетей. Типы локальных сетей и их устройство Какие локальные сети существуют

Компьютерные технологии сильно облегчают жизнь человечеству, а так как речь идет про локальные сети, то конкретное применение компьютерной сети разнообразно, но в основе всего лежит упрощение привычных задач. Локальные сети облегчают множество задач в плане передачи данных внутри компании или же в частной домашней сети. Об этом мы сегодня и поговорим.

Преимущества локальных сетей

Вот вы захотели перекинуть фильм на карту памяти планшета или смартфона, а вставать лень, но если у вас создана домашняя локальная сеть, то вы запросто можете воспользоваться видеоплеером, который поддерживает потоковую передачу с помощью локальной сети, как пример, VLC Media Player.

VLC Media Player нужно просто запустить, выбрать режим "Поток" и спокойно смотреть фильм, не вставая с дивана, на другом устройстве, либо же через общий доступ к папке, тогда нужно будет выбрать локальную сеть в программе и файл, который следует открыть.

Или вы - владелец бизнеса, и нужно, чтобы все сотрудники работали с высокой производительностью. Можно постоянно давать им нагоняй, но толку от высококлассных специалистов будет больше, если предоставить им современные технологии. Допустим, у вас частное предприятие по работе с документами, каждый раз мотаться туда-сюда надоест любому сотруднику, да и производительность падает. На помощь придет локальная сеть, с ее помощью можно избавиться от "пожирателя времени" в форме вечной беготни между столами в поисках нужной информации.

Это небольшое число примеров применения локальных сетей.

Давайте разберем следующие понятия: локальная сеть, типы локальных сетей, их преимущества и недостатки.

Локальная сеть

Компьютерная сеть, она же вычислительная или локальная сеть - система для обмена данными между электронными устройствами, обеспеченная средами передачи. Последними могут служить оптоволокно, радиоволны и т. д. Обеспечивает передачу данных до 10-15 километров между абонентами. Особенно полезно при нахождении внутри одного большого здания или в нескольких рядом расположенных зданиях.

Основные преимущества

  • Разделение ресурсов - рациональное использование устройств внутри сети.
  • Распределение данных - доступ к файлам с других устройств. Организация работы и общий доступ к рабочему документу и иным файлам.
  • Разделение приложений, установленных на компьютерах, - использование программ, установленных на соседних компьютерах.

Типы локальных сетей

Существует две модели локальных вычислительных сетей:

  • Одноранговая сеть.
  • Сеть типа клиент-сервер.

Начнем с пояснения первого термина.

В одноранговой вся информация распределена между устройствами. Любой пользователь может изменить права доступа к файлам. Рабочими станциями служат сами компьютеры.

Предоставляется полный доступ любому пользователю сети к любым ресурсам и файлам устройств.

Преимущества:

  • Этот тип легок в реализации и доступен при небольшом бюджете.
  • Подключение до 20 устройств (возможно больше).

Недостатки:

  • Много устройств - малая производительность (наблюдается при старом аппаратном и программном обеспечении).
  • Отсутствие единой информационной базы.
  • Низкая безопасность.
  • Зависимость информации от состояния компьютера, т. е. если устройство выключено, то и информация будет недоступна.

Сети типа клиент-сервер имеют только один главный компьютер - сервер. Он хранит информацию и обрабатывает ее.

Типы серверов:

  • Универсальный сервер - для несложных задач, обработка данных в локальной сети.
  • Сервер базы данных - обработка запросов, направляемых базе данных.
  • Proxy сервер - подключающий локальную сеть к сети Internet (VPN).
  • Файловый сервер - распределение ресурсов и доступ к файлам.
  • Сервер приложений - выполнение прикладных процессов.
  • Почтовый сервер - ответы на запросы, присланные по электронной почте.

Преимущества:

  • хорошая производительность;
  • единая база информации;
  • продвинутая система безопасности.

Недостатки:

  • стоимость;
  • нужен квалифицированный персонал для обслуживания.

Создание локальной сети

Вся система держится на передаче данных, чтобы их можно было отправить, нужны следующие приспособления:

Сетевой адаптер - плата для передачи и приема информации из сети. Компьютеры можно подключить с помощью кабелей различных типов (оптоволоконный, витая пара, коаксиальный).

Кабель - это основа канала связи - физическая среда передачи данных. Нужно особенно обратить внимание на пропускную способность (бит/сек, килобит/сек, мегабит/сек и т. д.). Как пример, кабель RJ45.

Используются также:


Программные средства. Помимо аппаратного оборудования, нужно специальное программное обеспечение и настройка компьютера или иного устройства для работы внутри сети:

  1. Система с поддержкой локальной сети.
  2. Настройка отдельных папок и данных для доступа извне.

Все современные, да и довольно старые системы, например, Windows XP, поддерживают создание и доступ к файлам в локальной сети. Так что основной поиск программ для доступа к сети сводится к отдельным устройствам, таким как смартфоны, планшеты (не на Windows), устройства на основе ядра Linux и т. д.

Топологии локальных сетей

Выделяют такие разновидности:

  • "Общая шина" (bus).
  • "Кольцо" (ring).
  • "Звезда" (star).
  • Физическая "звезда" и логическое "кольцо" (Token Ring).

Топология "общая шина".

Использует единый канал для передачи данных по кабелю (коаксиальный), на концах установлены оконечные сопротивления (терминаторы). Подключение через Т-разъем. Информация идет во все узлы, но принимается только конкретным.

Преимущества:

  • Отказ узла не повлияет на работу всей сети.
  • Легкая настройка.
  • Устойчивость при неисправности отдельных узлов.

Недостатки:

  • Разрыв кабеля влияет на работу всей сети.
  • Ограничение по протяженности кабеля и количеству рабочих станций.
  • Сложное нахождение дефекта в соединении.

Топология типа "кольцо".

Все узлы соединены в неразрывное кольцо, которая обеспечивает передачу информации. Передача идет через каждое устройство в сети, от одной точки к другой. Данные движутся в одном направлении.

Преимуществом является легкость создания и настройки. Среди недостатков можно назвать то, что при повреждении промежутка связи или отказе компьютера происходит сбой в работе всей сети.

Топология локальных сетей "звезда".

Каждый пк или сервер отдельно подключен кабелем к концентратору или хабу. Последний обеспечивает параллельное соединение.

Преимущества:

  • Простое подключение новых устройств.
  • Централизованное управление.
  • Устойчивость к неисправностям отдельных устройств в сети.

Недостатки:

  • Отказ повторителя (хаба) отрицательно влияет на работу всей сети.
  • Нужно много кабеля.

Топология Token Ring.

Основана на кольцевой топологии. Лучшая топология, так как предлагает, что доступ распределен равномерно по всем рабочим станциям и обеспечивает высокую надежность за счет устойчивости к разрывам отдельных станций. Однако очень дорогой вариант.

Классификация локальных сетей делится на просто локальные и локальные расширенные сети.

Сферы применения локальный сетей

Известны следующие случаи применения технологии:

  • Создание личных локальных сетей.
  • Игровые клубы и игра по локальной сети с друзьями.
  • Автоматизация управленческой деятельности, организация "электронных офисов".
  • Автоматизация производства.
  • Автоматизация обучения.

Угрозы

Многие типы могут подвергнуться взлому.

Так как все компьютеры соединены в одну сеть с общим доступом к файлам друг друга, то есть вероятность, что все это позволит любому хакеру внедрить вирус, троян в сеть, который распространится по всем компьютерам и устройствам в сети (почти всем), где есть проблемы с безопасностью.

Те же специалисты по техническому обслуживанию могут нести угрозу для компании, ведь ему ничего особо не мешает повлиять на сеть, особенно, если система типа сервер-клиент, для варианта одноранговой локальной сети это не так опасно.

А сделать можно много:

  • Украсть все данные, особенно, если они ничем не защищены и находятся в доступе локальной сети.
  • Внедрить шпиона, чтобы он исследовал действия пользователей.
  • Там, где рабочие компьютеры, там и домашние. Легким движением руки весь вредоносный код перекочует на домашний компьютер, если на нем не установлен антивирус.
  • Можно остановить саму деятельность сети, вызвав перезагрузку.
  • И много чего еще.

Поэтому нужно беспокоиться о безопасности всей сети.

Защита локальной сети

Необходимо обязательно использовать антивирусные решения от различных компаний, мониторить активность в сети, провести шифрование, применять создание DMZ - когда фрагмент сети не является полностью доверенным, IDS - систему обнаружения вторжений, NAT - технологию трансляции одного или нескольких адресов в другие адреса, межсетевой экран или Firewall, смену файловой системы на NTFS (для профессионалов), установку последних обновлений системы, не предоставлять полный доступ сотрудникам на их компьютерах, то есть разграничить их права и права администратора. Одноранговая локальная сеть обычно никому не нужна, так как они используются в школах и институтах, а особо добывать там нечего.

Модель взаимодействия открытых систем (Open Systems Interconnection reference model - OSI) описывает, каким образом информация от приложения в одном компьютере перемещается через сетевую среду к приложению в другом компьютере. Модель соединения открытых систем - концептуальная модель, составленная из семи уровней, каждый из которых специфицирует определенную группу функций сети. Модель была разработана Международной организацией стандартизации (International Organisation for Standardisation - ISO) в 1984 году и теперь считается базовой архитектурной моделью межмашинной связи. Модель ВОС делит задачи, связанные с перемещением информации между сетевыми компьютерами на семь меньших, более управляемых групп задач.

Таблица структуры уровней модели ВОС

Задача или группа задач помещается на один из семи уровней соединения открытых систем. Каждый уровень является разумно автономным, так, чтобы задачи, назначенные на каждый уровень, могли быть осуществлены независимо. Это дает возможность изменять процессы и конструкции, размещенные на одном из уровней, не затрагивая другие.

Семь уровней модели могут быть разделены на две категории: верхние и нижние. Верхние уровни модели открытых систем имеют дело с прикладными проблемами и полностью осуществляются только в программном обеспечении. Самый высокий уровень (приложений) наиболее близок к конечному пользователю.

Нижние уровни моделируют проблемы транспортировки данных. Физический уровень и уровень передачи данных реализуются в аппаратных средствах и программном обеспечении. Самый нижний, физический уровень, наиболее близок к физической сетевой среде (кабели, например) и ответственен за перемещение информации относительно среды.

Топология локальной сети

Топология локальной сети определяет способ, которым организованы сетевые устройства. Существуют четыре основные топологии локальных сетей:

  • шинная (магистральная) топология - линейная архитектура локальной сети, в которой узлы соединены с шиной и могут устанавливать связь со всеми другими узлами на этом сегменте кабеля. Обрыв где-нибудь в магистрали (кабеле) означает полный выход сегмента из строя, пока связь не восстановлена;
  • кольцевая топология - архитектура локальной сети, в которой все устройства связаны друг с другом петлей, так чтобы каждое устройство было связано непосредственно с двумя соседними. Данная топология используется в сетях Token Ring/IEEE 802.5 и FDDI;
  • звездообразная топология - архитектура, в которой оконечные узлы сети связаны с общим центральным концентратором или переключателем выделенными связями. Сети 1OBaseT Ethernet используют звездообразную топологию. Основное преимущество этого типа сети - надежность: если один из «двухточечных» сегментов имеет разрыв, это затронет только узлы на этой связи; другие пользователи на сети продолжают работать, как будто этот сегмент не существует;
  • топология «дерева» - архитектура локальной сети, которая является идентичной шинной топологии, за исключением того, что в этом случае возможны ветви с множественными узлами.
  • а - магистраль (шина);
  • б - кольцо;
  • в - звезда;
  • г - дерево.

Из трех наиболее распространенных типов локальной сети шинную топологию используют сети стандартный Ethernet/IEEE 802.3, кольцевую - Fibre Distributed Data Interface (FDDI) и Token Ring/IEEE 802.5.

FDDI

Оптоволоконный интерфейс к распределенным данным (Fibre Distributed Data Interface - FDDI) был разработан комитетом стандартов Американского национального института стандартов (ANSI) в середине 1980-х годов, когда высокоскоростные АРМ проектировщиков начали перегружать полосу пропускания существующих локальных сетей, основанных на Ethernet и Token Ring. Стандарт определяет двойную кольцевую локальную сеть с эстафетным доступом на 100 Мбит/с, использующую волоконно-оптический кабель. FDDI занял свою нишу как надежная, высокоскоростная магистраль для сетей критического назначения с высоким потоком данных.

FDDI использует двойную кольцевую топологию, которая включает два противовращающихся кольца. В процессе нормального функционирования первичное кольцо используется для передачи данных, а вторичное кольцо простаивает. Наличие двойных колец должно обеспечить высокую надежность и устойчивость к ошибкам.

Станция в сети присоединяется к обоим из этих колец и должна иметь не менее двух портов - «А», где первичное кольцо входит и вторичное кольцо выходит, и «В», где вторичное кольцо входит и первичное выходит. Предусмотрены также порты «М», которые являются соединениями для присоединяемых станций, и станция с не менее чем одним М-портом является концентратором.

Последовательность, в которой станции получают доступ к среде, предопределена протоколом сети. Станция генерирует специальную сигнальную последовательность, названную маркером (Token), которая определяет право передачи. Этот маркер непрерывно передают вокруг сети от одного узла к другому. Когда станция собирается послать сообщение, она задерживает маркер, формирует информацию в определенный пакет (фрейм, кадр) FDDI, затем отпускает маркер. Заголовок такого кадра включает адрес станции(й), которая является его получателем. Каждая станция читает кадр, поскольку он передается вдоль кольца, чтобы определить, является ли она адресатом. Если это так, она извлекает данные, передавая кадр далее по кольцу. Когда кадр возвращается к станции возникновения, он ликвидируется. Схема эстафетного управления доступом позволяет всем станциям совместно использовать сетевую полосу пропускания в упорядоченном и эффективном режиме.

Token Ring (Эстафетное кольцо)

Этот стандарт предложен фирмой IBM в 1984 году В качестве передающей среды применяется витая пара или оптоволоконные кабели. Скорость передачи данных - 4 или 16 Мбит/с. В качестве метода управления доступом станций к передающей среде используется метод маркерного кольца (Token Ring), который также разработан фирмой IBM и рассчитан на кольцевую топологию сети.

Основные положения этого метода:

  • компьютеры подключаются в сеть по топологии «звезда» или «кольцо»;
  • все устройства, подключенные к сети, могут передавать данные, только получив разрешение на передачу (маркер). Маркер передается по кольцу, минуя каждую рабочую станцию в сети. Рабочая станция, располагающая информацией, которую необходимо передать, может добавить к маркеру кадр данных. В противном случае (при отсутствии данных) она просто передает маркер следующей станции;
  • в любой момент времени таким правом обладает только одна станция сети.

В IBM Token Ring используются три основных типа пакетов:

  • пакет управление/данные (Data/Command Frame). С помощью такого пакета выполняется передача данных или команд управления работой сети;
  • маркер (Token). Станция может начать передачу данных только после получения такого пакета; в одном кольце может быть только один маркер и соответственно только одна станция с правом передачи данных;
  • пакет сброса (Abort). Посылка такого пакета вызывает прекращение любых передач.

Ethernet

Спецификации Ethernet начали разрабатываться Xerox Corporation в середине 1970-х годов, и в 1979 году Digital Equipment Corporation (DEC) и Intel также присоединились к этим работам.

Первая спецификация, выпущенная этими тремя компаниями в 1980 году, называлась «Ethernet Blue Book» и известна под именем «DIX standard» (от инициалов компаний-разработчиков). Это была система на 10 Мбит/с, которая использовала большой коаксиальный кабель в качестве магистрали, прокладываемой внутри здания с меньшими коаксиальными кабелями, отходящими через интервалы около 2.5 м, чтобы соединяться с рабочими станциями. Линия на большом коаксиальном кабеле (обычно желтого цвета) стала известной как «толстый Ethernet» или 10Base-5, где:

  • 10 характеризует скорость (10 Мбит/с);
  • Base означает, что используется система с полосой немодулированных частот;
  • 5 - краткое обозначение для максимальной длины кабеля системы (500 м).

IEEE выпустила официальный стандарт Ethernet в 1983 году, который был назван IEEE 802.3 по наименованию рабочей группы, ответственной за его развитие, а в 1985 году была выпущена версия 2 (IEEE 802.3а). Эта версия известна как «тонкий Ethernet» или 10Base-2, в этом случае максимальная длина 185 м (хотя 2 означает 200 м).

Протокол коллективного доступа Ethernet - множественный доступ с опросом носителя и разрешением конфликтов (Carrier Sense Multiple Access with Collision Detection - CSMA/CD) и протокол управления доступом к носителю (Media Access Control - MAC) определяют правила пользования для общедоступной сети. Название самого протокола поясняет, как собственно фактически работает процесс управления трафика. Устройства, подключенные к сети проверяют или обнаруживают наличие носителя (проводной связи) перед началом передачи. Если сеть занята, устройство ожидает ее освобождения. Коллективный доступ относится к факту, что несколько устройств могут совместно использовать одну и ту же сетевую среду. Если случайно два устройства попытаются передать данные точно в одно и то же время и возникает коллизия, то механизм разрешения коллизий заставляет оба устройства перейти в ожидание на случайный интервал времени, а затем повторить передачу.

Популярность Ethernet росла в течение 1990-х годов, пока технология не стала почти вездесущей. К концу 1997 года было оценено, что более 85 % всех установленных сетевых подключений имели тип Ethernet, а в следующем году технология составляла 86 % поставок сетевого оборудования. Несколько факторов внесли вклад в успех Ethernet, не в последнюю очередь его масштабируемость.

Быстрый Ethernet

Быстрый Ethernet был официально принят летом 1995 года, спустя два года после того, как группа ведущих сетевых компаний сформировала Союз Быстрого Ethernet (Fast Ethernet Alliance), чтобы разработать стандарт. Быстрый Ethernet (также называемый 100Base-T) сохраняет тот же самый протокол CSMA/CD, кроме того, использование кабеля Категории 5 (смотри таблицу 7.9) обеспечивает более высокую полосу пропускания и вводит новые возможности типа полнодуплексной передачи и автоматического установления связи.

Гигабит-Ethernet

Следующий шаг в развитии Ethernet управлялся Союзом гигабит-Ethernet (Gigabit Ethernet Alliance), образованным в 1996 году Утверждение ряда стандартов гигабит-Ethernet зыло закончено летом 1999 года, и они определяют физический уровень использования комплекса проверенных технологий, включая лервоначальные спецификации Ethernet и Спецификацию волоконного канала ANSI ХЗТ11:

  • 1000Base-X - стандарт использует на физическом уровне оптоволоконные каналы и определяет технологию взаимосвязи для подключения рабочих станции, суперЭВМ, накопителей информации и периферийные устройства, используя волоконно-оптические и проводные (экранированная витая пара) типы носителей;
  • 1000Base-T - стандарт для связи с использованием неэкранированной витой пары.

Гигабит-Ethernet является преемственной по отношению к 10 Мбит/с и 100 Мбит/с предшественникам, позволяя прямое перемещение к работе с сетями более высокой скорости. Все три скорости Ethernet используют один и тот же формат кадра передачи данных IEEE 802.3, полнодуплексные операции и методы управления потоком данных. В полудуплексном режиме гигабит-Ethernet использует тот же самый метод множественного доступа с опросом несущей и разрешением конфликтов.

Использование одного и того же формата кадра (фрейма) переменной длины (от 64 до 1514 байт) IEEE 802.3 как в Ethernet, так и быстром Ethernet является ключом к совместимости, к тому, что существующие устройства Ethernet малого быстродействия могут быть связаны с устройствами гигабит-Ethernet, используя сетевые коммутаторы или маршрутизаторы, чтобы приспособить одну физическую скорость линии к другой.

Одноранговые и клиент серверные сети

В одноранговой сетевой архитектуре (peer-to-peer) каждый компьютер (рабочая станция) имеет эквивалентные возможности и обязанности. Нет разделения функций, и компьютеры просто соединяются друг с другом в рабочей группе, чтобы совместно использовать файлы, принтеры и доступ к . Это является обычным для рабочих групп, включающих 10 или менее компьютеров, делая это обычным во многих системах малого офиса, где каждый персональный компьютер действует как независимая рабочая станция, которая сохраняет данные на собственном НЖМД, но может совместно использовать данные со всех других персональных компьютеров на сети.

Программное обеспечение для одноранговых сетей включено в современные операционные системы настольных персональных компьютеров типа Windows и MAC OS (Макинтош) без необходимости приобретения специального сетевого программного обеспечения.

Клиент серверная сетевая архитектура стала популярной в конце 1980-х и в начале 1990-х годов, так как многие приложения были перенесены от хост компьютеров и универсальных ЭВМ к сетям персональных компьютеров.

Разработка приложений для распределенной вычислительной среды требовала, чтобы они фактически были разделены на две части: клиент (передняя сторона) и сервер (задняя сторона). Сетевая архитектура, на которой они были осуществлены, отразила эту клиент серверную модель, где персональный компьютер пользователя (клиент) действует как машина-источник запросов, а более мощная машина сервер, с которой осуществляется связь через локальную или глобальную сеть, действует как система обслуживания запросов.

  • а - распределенное отображение данных;
  • б - удаленное отображение данных (эмуляция терминала);
  • в - распределенное приложение (серверы приложений);
  • г - доступ к удаленной базе данных (серверы баз данных);
  • д - доступ к распределенной базе данных (интеграция/репликация баз данных)

Сетевые аппаратные средства

Сети базируются на аппаратных средствах и программном обеспечении. Сетевые аппаратные средства обеспечивают физические связи между различными узлами сети и типично включают:

  • сетевые интерфейсные платы, одна на каждый персональный компьютер;
  • сетевые устройства (концентраторы, мосты, маршрутизаторы, переключатели и так далее). Предназначены для того, чтобы подключать различные сегменты сети и гарантировать, что пакеты информации посылают предназначенному адресату;
  • сетевые кабели, которые соединяют каждую сетевую карту с концентратором или переключателем.

Сетевые карты (адаптеры)

Сетевые интерфейсные платы (Network interface cards - NIC), обычно называемые сетевыми картами, используются, чтобы подключить персональный компьютер к сети, и обеспечивают физическую связь между сетевой средой и внутренней шиной компьютера (модель открытых систем - уровни 1 и 2).

Большинство сетевых адаптеров разработано для специфического типа сети, протокола и носителей, хотя некоторые могут обслуживать различные сети.

  • а - сетевая интерфейсная карта;
  • б - концентратор;
  • в - трансивер.

Концентраторы/повторители

Концентратор/повторитель (размножитель, иногда - «хаб», от hub) используется, чтобы соединить два или больше сетевых сегмента с любым типом среды передачи (носителя). В больших сетях качество передачи начинает ухудшаться, как только сегменты превышают некоторую максимальную длину. Концентраторы усиливают сигнал, что позволяет увеличить размер сегмента. Пассивные концентраторы просто отправляют любые пакеты данных, которые они получают от одной из рабочих станций, ко всем остальным. Активные концентраторы, также иногда называемые «многопортовые повторители» (multiport repeaters), восстанавливают форму сигнала, разрушающегося в процессе прохождения по сети.

Число и тип концентраторов в любом домене коллизий для сетей 10Base-T Ethernet ограничены величинами, приведенными в таблице.

В то время как повторители позволяют размерам локальных сетей превышать нормальные пределы расстояния, они все же ограничивают количество поддерживаемых узлов. Такое оборудование, как мосты, маршрутизаторы и коммутаторы, однако, позволяют локальным сетям становиться значительно крупнее благодаря их способности поддерживать полные сегменты Ethernet на каждом порту.

Мосты

Мосты - устройства передачи данных, которые используются преимущественно на уровне 2 модели взаимодействия открытых систем (устройства уровня передачи данных).

Мосты также называют устройствами «с промежуточным накоплением», потому что они анализируют пакет Ethernet полностью перед решением о фильтрации или отправлении. Большинство мостов - самообучающиеся, они формируют таблицу пользовательских адресов Ethernet на сегменте, анализируя пакеты, проходящие сеть.

Маршрутизаторы

Маршрутизация - управление перемещением информации через множество сетей от источника до адресата. Она противопоставляется коммутации (соединению), которая исполняет подобную же функцию. Различие заключается в том, что соединение происходит на уровне 2 (уровень связи) ВОС, тогда как маршрутизация - на уровне 3 (сетевой).

Маршрутизаторы используют информацию, входящую в состав каждого пакета, чтобы направить его от одной локальной сети до другой, а также связываются друг с другом и обмениваются информацией, которая позволяет им определять оптимальный маршрут через сложную сеть из многих локальных сетей. Чтобы сделать это, маршрутизаторы формируют и поддерживают «таблицы маршрутизации», которые содержат различные виды информации о маршрутах в зависимости от используемых алгоритмов. Получив пакет, маршрутизатор выбирает оптимальный маршрут, посылая пакет на тот или иной следующий маршрутизатор.

Коммутаторы

Коммутаторы - расширение концепции мостов локальных сетей. Они работают на уровне 2 (уровень связи) ВОС, осуществляя управление потоком данных, обеспечивая физическую (в противоположность логической) адресацию и управляя доступом к физической среде.

Сетевые коммутаторы могут связать четыре, шесть, десять или больше сетей вместе и имеют два основных типа - «сокращенный» и «с промежуточным накоплением». Коммутаторы первого типа работают быстрее, потому что они исследуют только адрес назначения перед отправлением пакета на сегмент адресата. Коммутатор с промежуточным накоплением, наоборот, принимает и анализирует полный пакет перед отправлением адресату.

Приемопередатчики. Приемопередатчики (трансиверы) используются, чтобы соединять узлы с различными средами передачи Ethernet. Большинство компьютеров и сетевых интерфейсных плат содержат встроенный 10Base-T или 10Base-2 приемопередатчик, позволяя им связываться непосредственно с Ethernet, не требуя внешнего приемопередатчика. Много устройств Ethernet обеспечиваются соединителем интерфейса устройств доступа, чтобы позволить пользователю соединяться с любым типом сред передачи через внешний приемопередатчик. Соединитель интерфейса устройств доступа состоит из пары разъемов типа D с 15 штырьками. «Толстые» (10Base-5) кабели также используют приемопередатчики, чтобы осуществлять подключения.

Для сетей быстрого Ethernet был разработан интерфейс, названный «Интерфейс, независимый от среды» (Media Independent Interface), предлагающий гибкий способ поддержать подключения на скорости 100 Мбит/с. Это - популярный способ подключения к 100Base-FX устройств быстрого Ethernet на основе проводной связи.

Внутренние (домашние) сети

К концу 2002 года более 30 млн североамериканских домашних хозяйств имели два или более компьютеров - и они столкнулись с теми же проблемами, что и предприниматели почти 20 годадами ранее: неспособность совместно использовать компьютеры и периферийные ресурсы или распределять информацию между пользователями.

Сети Ethernet

Для приспособления сетевых технологий к данному рынку производители разработали домашние сетевые комплекты, состоящие из дешевых сетевых адаптеров, недорогого концентратора и программного обеспечения простой конфигурации.

Кабели UTP Категорий 3 или 5, требуемые сетями Ethernet, доступны в компьютерных магазинах и «все для дома», а также устанавливаются во многих новостройках. Задача коммуникации не трудна, особенно в ситуациях, где все персональные компьютеры расположены в одной комнате типа домашнего офиса.

Рисунок показывает, как сеть Ethernet может быть установлена в доме. Внутренние или внешние сетевые адаптеры размещены в каждом персональном компьютере. Периферийные устройства без прямого подключения к Ethernet (например, принтер) разделены через сетевой компьютер. Каждый персональный компьютер связан с концентратором по кабелю Категории 3 или 5. Концентратор управляет связью между устройствами на сети. Единичный канал на 56 Кбит/с - ISDN, аналоговый, кабельный или ADSL-модем, обеспечивает общедоступное подключение к Интернет.

Сети на телефонных линиях

Такие сети используют в своих интересах незанятую пропускную способность существующих телефонных проводов. Информация передается на частотах, много больших, чем обычная телефонная сеть (POTS) или цифровые услуги ISDN (xDSL), так что нет конфликта с использованием телефонной линии для звуковой телефонии, факса или услуг Интернет, эксплуатирующих те же самые телефонные цепи.

Используется технология разделения общей полосы пропускания - частотное мультиплексирование (frequency division multiplexing - FDM). Здесь полная полоса пропускания делится на несколько полос, называемых каналами, используя фильтры. Каждый вид трафика - аналоговый (голос) и цифровой (данные, аудио и видео) - использует различные каналы.

Первая спецификация, выпущенная осенью 1998 года Альянсом по домашним сетям (Home Phoneline Networking Alliance - HomePNA), приняла метод доступа к носителям IEEE 802.3, по существу обеспечивая 1 Мбит/с Ethernet по телефонным линиям. Последующая версия - HomePNA 2.0, завершенная в конце 1999 года, использует цифровую обработку сигналов (технология, встроенная в микросхемы), чтобы предложить более высокую эффективность, лучшее приспособление к узкополосным линиям, увеличивая силу сигнала и улучшая фильтрацию шума от близлежащих приборов. Устройства, основанные на HomePNA 2.0, могут поддерживать скорости передачи до 10 Мбит/с.

В типичных домашних сетях на телефонных линиях внутренние или внешние сетевые адаптеры установлены в каждом персональном компьютере и включены в близлежащее телефонное гнездо. Принтеры или другие устройства, включая одновременный доступ к Интернет через канал на 56 Кбит/с (ISDN, аналоговый, кабельный или ADSL-модем), могут быть разделены между персональным компьютером.

Сети на линиях электропитания

Эти сети устроены наподобие рассмотренных выше, но используют для связи цепи электропитания или силовые линии электропередачи. Внутренние или внешние сетевые адаптеры установлены в каждом персональном компьютере и подключаются в близлежащую розетку электропитания.

Технологии сетей на силовых линиях используют разнообразие методов доступа к носителю, включая множественный доступ с опросом несущей и разрешением конфликтов (CSMA/CD), датаграммный коллективный доступ (datagram sensing multiple access - DSMA), централизованную эстафетную передачу (centralised token passing - CTP).

Кроме того, здесь также используется технология модуляции, именуемая кодированием со сдвигом частот (frequency shift keying - FSK) для передачи цифровых сигналов. Кодирование со сдвигом частот использует две или больше различных частот в узкой полосе, одна определяет «1», другая «0» двоичного кода.

Сети на силовых линиях имеют те же плюсы, что и сети на телефонных линиях, однако имеются и недостатки. Во-первых, они не обеспечивают таких скоростей, как другие сетевые среды передачи, в связи с высоким уровнем помех. Типичные скорости располагаются от 50 до 350 кбит/с. Во-вторых, поскольку единый кабель электропитания подводится к множеству домов и квартир, всегда возможна или утечка информации, или внешнее проникновение. Поэтому требуется или установка частотных фильтров на силовые кабели, или шифровка данных, или иные защитные мероприятия.

Беспроводные сети

Беспроводные локальные сети (WLAN) предлагают дополнительные преимущества для потребителей - подвижность. Потребители имеют возможность передвигаться внутри или снаружи их домов и оставаться подключенными к Интернет или к другим ресурсам сети. Инсталляция проста, потому что не требуется никаких проводов, и беспроводные сетевые компоненты могут быть установлены где угодно в доме.

Конечные пользователи обращаются к WLAN через адаптеры беспроводной локальной сети, которые реализуются как платы PCMCIA в портативных компьютерах, ISA или PCI-платы в настольных компьютерах или встроены в карманные (ручные) компьютеры. Адаптеры WLAN обеспечивают интерфейс между клиентами сетевой операционной системой через антенну; характер беспроводного подключения прозрачен для сетевой операционной системы.

На рисунке показано, как беспроводная сеть может быть установлена в доме. Внутренние или внешние адаптеры установлены на каждом персональном компьютере. Принтеры или другие периферийные устройства могут быть разделены через подсоединение к персональному компьютеру. Устройство пункта доступа соединяется с цифровой абонентской линией или кабельным модемом и обеспечивает высокоскоростной доступ к Интернет для всей сети.

О том, что весь современный мир представляет собой гигантскую виртуальную паутину известно, пожалуй, каждому школьнику. Времена, когда обмен информацией осуществлялся по принципу «из рук в руки», а основным носителем данных была проштампованная бумажная папочка, остались в далеком прошлом, теперь же бесчисленные виртуальные магистрали соединяют все точки планеты в единую информационную систему – компьютерную сеть передачи данных.

Что такое компьютерная сеть?

В общем смысле компьютерная сеть передачи данных – это система связи различной вычислительной техники (в т.ч. ПК и пользовательской оргтехники), необходимая для автоматического обмена данными между конечными пользователями, а также удаленного управления функциональными узлами и программным обеспечением данной сети.

Способов классификации компьютерных сетей великое множество (по архитектуре, типу среды передачи, сетевым операционным системам и т.д.), однако углубляться в дебри теории сетевых технологий мы не станем: особо любознательные пользователи всегда смогут найти данную информацию в учебной литературе. Здесь же мы ограничимся простейшей классификацией сетей в зависимости от их протяженности.

Итак, компьютерные сети по территориальному признаку делятся на локальные и глобальные:

Глобальная компьютерная сеть – это сеть передачи данных, охватывающая весь мир (или отдельные крупные регионы) и объединяющая неограниченное число несвязанных абонентов.

Локальная компьютерная сеть – это совокупность соединенных каналами связи ПК и сетевого оборудования, предназначенная для передачи данных конечному числу пользователей. К слову, термин «локальная сеть» был присвоен системе в те времена, когда возможности оборудования не позволяли организовать подобную связь для удаленных на большие расстояния абонентов, ныне же локальные компьютерные сети используются как для организации местной связи (в пределах одного здания или организации), так и охватывают целые города, регионы и даже страны.

Виды компьютерных сетей

По способу организации связи между абонентами топология компьютерных сетей выделяет следующие схемы локальных сетей:

Где узлами сети выступают компьютеры, оргтехника и различное сетевое оборудование.

Более сложные топологии (такие, как древовидная сеть, ячеистая сеть и т.д.) строятся путем различных соединений трех элементарных видов локальной сети.

Функции локальных сетей

О предназначении глобальных сетей и том, какую пользу миру несет интернет, мы рассказывать не станем: основные функции всемирной паутины и так прекрасно известны каждому пользователю, а подробному описанию всех возможностей сети можно посвятить не одну книгу.

При этом домашние сети незаслуженно обделены информационным вниманием, и многие пользователи не понимают, зачем вообще им нужна локальная сеть.

Итак, основные функции локальной сети:

  • - Оптимизация рабочего процесса. Так, домашняя локальная сеть, организованная, например, в офисе, обеспечивает всем его сотрудникам возможность дистанционного обмена данными, а также совместного использования всех видов оргтехники;
  • - Общение. Конечно, полностью заменить «интернет-коннектинг» локальные сети не смогут, но в тех случаях, когда требуется организовать собственный, закрытый от внешних пользователей, канал связи (например, форум сотрудников корпорации) локальные сети просто незаменимы;
  • - Возможность удаленного администрирования. Так, корпоративная локальная сеть позволяет одному специалисту оказывать техническую поддержку нескольких десятков различных устройств;
  • - Экономия. Согласитесь, логичнее единожды оплатить подключение к интернету и обеспечить всем сотрудникам организации (пользовательским устройствам) возможность свободного доступа, чем проплачивать доступ к всемирной паутине каждому сотруднику (гаджету) индивидуально;
  • - Игры, безопасность обмена данными, пользовательский комфорт и многое другое.

Таким образом, локальная сеть - весьма и весьма полезный инструмент в любой сфере деятельности. По сути, именно локальные сети заменили всем известную «голубиную почту» как на любом предприятии, так и между друзьями-знакомыми (ведь это куда более функциональная альтернатива перестукивания по батарее и сигналов типа «кактус» на подоконнике). И наши уроки помогут вам не только создать локальную сеть с нуля своими руками, но и решить куда более сложные вопросы администрирования корпоративных сетей и настройки разных видов сетевого оборудования.

Данная статья посвящена основам локальной сети , здесь будут рассмотрены следующие темы:

  • Понятие локальная сеть;
  • Устройство локальной сети;
  • Оборудование для локальной сети;
  • Топология сети;
  • Протоколы TCP/IP;
  • IP-адресация.

Понятие локальной сети

Сеть — группа компьютеров, соединенных друг с другом, с помощью специального оборудования, обеспечивающего обмен информацией между ними. Соединение между двумя компьютерами может быть непосредственным (двухточечное соединение ) или с использованием дополнительных узлов связи.

Существует несколько типов сетей, и локальная сеть — лишь одна из них. Локальная сеть представляет собой, по сути, сеть, используемую в одном здании или отдельном помещении, таком как квартира, для обеспечения взаимодействия используемых в них компьютеров и программ. Локальные сети, расположенные в разных зданиях, могут быть соединены между собой с помощью спутниковых каналов связи или волоконно-оптических сетей, что позволяет создать глобальную сеть, т.е. сеть, включающую в себя несколько локальных сетей.

Интернет является еще одним примером сети, которая уже давно стала всемирной и всеобъемлющей, включающей в себя сотни тысяч различных сетей и сотни миллионов компьютеров. Независимо от того, как вы получаете доступ к Интернету, с помощью модема, локального или глобального соединения, каждый пользователь Интернета является фактически сетевым пользователем. Для работы в Интернете используются самые разнообразные программы, такие как обозреватели Интернета, клиенты FTP, программы для работы с электронной почтой и многие другие.

Компьютер, который подключен к сети, называется рабочей станцией (Workstation ). Как правило, с этим компьютером работает человек. В сети присутствуют и такие компьютеры, на которых никто не работает. Они используются в качестве управляющих центров в сети и как накопители информации. Такие компьютеры называют серверами,
Если компьютеры расположены сравнительно недалеко друг от друга и соединены с помощью высокоскоростных сетевых адаптеров то такие сети называются локальными. При использовании локальной сети компьютеры, как правило, расположены в пределах одной комнаты, здания или в нескольких близко расположенных домах.
Для объединения компьютеров или целых локальных сетей, которые расположены на значительном расстоянии друг от друга, используются модемы, а также выделенные, или спутниковые каналы связи. Такие сети носят название глобальные. Обычно скорость передачи данных в таких сетях значительно ниже, чем в локальных.

Устройство локальной сети

Существуют два вида архитектуры сети: одноранговая (Peer-to-peer ) и клиент/ сервер (Client/Server ), На данный момент архитектура клиент/сервер практически вытеснила одноранговую.

Если используется одноранговая сеть, то все компьютеры, входящие в нее, имеют одинаковые права. Соответственно, любой компьютер может выступать в роли сервера, предоставляющего доступ к своим ресурсам, или клиента, использующего ресурсы других серверов.

В сети, построенной на архитектуре клиент/сервер, существует несколько основных компьютеров - серверов. Остальные компьютеры, которые входят в сеть, носят название клиентов, или рабочих станций.

Сервер — это компьютер, который обслуживает другие компьютеры в сети. Существуют разнообразные виды серверов, отличающиеся друг от друга услугами, которые они предоставляют; серверы баз данных, файловые серверы, принт-серверы, почтовые серверы, веб-серверы и т. д.

Одноранговая архитектура получила распространение в небольших офисах или в домашних локальных сетях, В большинстве случаев, чтобы создать такую сеть, вам понадобится пара компьютеров, которые снабжены сетевыми картами, и кабель. В качестве кабеля используют витую пару четвертой или пятой категории. Витая пара получила такое название потому, что пары проводов внутри кабеля перекручены (это позволяет избежать помех и внешнего влияния ). Все еще можно встретить достаточно старые сети, которые используют коаксиальный кабель. Такие сети морально устарели, а скорость передачи информации в них не превышает 10 Мбит/с.

После того как сеть будет создана, а компьютеры соединены между собой, нужно настроить все необходимые параметры программно. Прежде всего убедитесь, что на соединяемых компьютерах были установлены операционные системы с поддержкой работы в сети (Linux, FreeBSD, Windows )

Все компьютеры в одноранговой сети объединяются в рабочие группы, которые имеют свои имена (идентификаторы ).
В случае использования архитектуры сети клиент/сервер управление доступом осуществляется на уровне пользователей. У администратора появляется возможность разрешить доступ к ресурсу только некоторым пользователям. Предположим, что вы делаете свой принтер доступным для пользователей сети. Если вы не хотите, чтобы кто угодно печатал на вашем принтере, то следует установить пароль для работы с этим ресурсом. При одноранговой сети любой пользователь, который узнает ваш пароль, сможет получить доступ к вашему принтеру. В сети клиент/ сервер вы можете ограничить использование принтера для некоторых пользователей вне зависимости от того, знают они пароль или нет.

Чтобы получить доступ к ресурсу в локальной сети, построенной на архитектуре клиент/сервер, пользователь обязан ввести имя пользователя (Login - логин) и пароль (Password). Следует отметить, что имя пользователя является открытой информацией, а пароль — конфиденциальной.

Процесс проверки имени пользователя называется идентификацией. Процесс проверки соответствия введенного пароля имени пользователя - аутентификацией. Вместе идентификация и аутентификация составляют процесс авторизации. Часто термин «аутентификация » — используется в широком смысле: для обозначения проверки подлинности.

Из всего сказанного можно сделать вывод о том, что единственное преимущество одноранговой архитектуры — это ее простота и невысокая стоимость. Сети клиент/сервер обеспечивают более высокий уровень быстродействия и защиты.
Достаточно часто один и тот же сервер может выполнять функции нескольких серверов, например файлового и веб-сервера. Естественно, общее количество функций, которые будет выполнять сервер, зависит от нагрузки и его возможностей. Чем выше мощность сервера, тем больше клиентов он сможет обслужить и тем большее количество услуг предоставить. Поэтому в качестве сервера практически всегда назначают мощный компьютер с большим объемом памяти и быстрым процессором (как правило, для решения серьезных задач используются многопроцессорные системы )

Оборудование для локальной сети

В самом простом случае для работы сети достаточно сетевых карт и кабеля. Если же вам необходимо создать достаточно сложную сеть, то понадобится специальное сетевое оборудование.

Кабель

Компьютеры внутри локальной сети соединяются с помощью кабелей, которые передают сигналы. Кабель, соединяющий два компонента сети (например, два компьютера ), называется сегментом. Кабели классифицируются в зависимости от возможных значений скорости передачи информации и частоты возникновения сбоев и ошибок. Наиболее часто используются кабели трех основных категорий:

  • Витая пара;
  • Коаксиальный кабель;
  • Оптоволоконный кабель,

Для построения локальных сетей сейчас наиболее широко используется витая пара . Внутри такой кабель состоит из двух или четырех пар медного провода, перекрученных между собой. Витая пара также имеет свои разновидности: UTP (Unshielded Twisted Pair - неэкранированная витая пара ) и STP (Shielded Twisted Pair - экранированная витая пара ). Эти разновидности кабеля способны передавать сигналы на расстояние порядка 100 м. Как правило, в локальных сетях используется именно UTP. STP имеет плетеную оболочку из медной нити, которая имеет более высокий уровень защиты и качества, чем оболочка кабеля UTP.

В кабеле STP каждая пара проводов дополнительно экранировала (она обернута слоем фольги ), что защищает данные, которые передаются, от внешних помех. Такое решение позволяет поддерживать высокие скорости передачи на более значительные расстояния, чем в случае использования кабеля UTP, Витая пара подключается к компьютеру с помощью разъема RJ-45 (Registered Jack 45 ), который очень напоминает телефонный разъем RJ-11 (Regi-steredjack ). Витая пара способна обеспечивать работу сети на скоростях 10,100 и 1000 Мбит/с.

Коаксиальный кабель состоит из медного провода, покрытого изоляцией, экранирующей металлической оплеткой и внешней оболочкой. По центральному проводу кабеля передаются сигналы, в которые предварительно были преобразованы данные. Такой провод может быть как цельным, так и многожильным. Для организации локальной сети применяются два типа коаксиального кабеля: ThinNet (тонкий, 10Base2 ) и ThickNet (толстый, 10Base5 ). В данный момент локальные сети на основе коаксиального кабеля практически не встречаются.

В основе оптоволоконного кабеля находятся оптические волокна (световоды), данные по которым передаются в виде импульсов света. Электрические сигналы по оптоволоконному кабелю не передаются, поэтому сигнал нельзя перехватить, что практически исключает несанкционированный доступ к данным. Оптоволоконный кабель используют для транспортировки больших объемов информации на максимально доступных скоростях.

Главным недостатком такого кабеля является его хрупкость: его легко повредить, а монтировать и соединять можно только с помощью специального оборудования.

Сетевые карты

Сетевые карты делают возможным соединение компьютера и сетевого кабеля. Сетевая карта преобразует информацию, которая предназначена для отправки, в специальные пакеты. Пакет - логическая совокупность данных, в которую входят заголовок с адресными сведениями и непосредственно информация. В заголовке присутствуют поля адреса, где находится информация о месте отправления и пункте назначения данных, Сетевая плата анализирует адрес назначения полученного пакета и определяет, действительно ли пакет направлялся данному компьютеру. Если вывод будет положительным, то плата передаст пакет операционной системе. В противном случае пакет обрабатываться не будет. Специальное программное обеспечение позволяет обрабатывает все пакеты, которые проходят внутри сети. Такую возможность используют системные администраторы, когда анализируют работу сети, и злоумышленники для кражи данных, проходящих по ней.

Любая сетевая карта имеет индивидуальный адрес, встроенный в ее микросхемы. Этот адрес называется физическим, или MAC-адресом (Media Access Control - управление доступом к среде передачи ).

Порядок действий, совершаемых сетевой картой, такой.

  1. Получение информации от операционной системы и преобразование ее в электрические сигналы для дальнейшей отправки по кабелю;
  2. Получение электрических сигналов по кабелю и преобразование их обратно в данные, с которыми способна работать операционная система;
  3. Определение, предназначен ли принятый пакет данных именно для этого компьютера;
  4. Управление потоком информации, которая проходит между компьютером и сетью.

Концентраторы

Концентратор (хаб ) — устройство, способное объединить компьютеры в физическую звездообразную топологию. Концентратор имеет несколько портов, позволяющих подключить сетевые компоненты. Концентратор, имеющий всего два порта, называют мостом. Мост необходим для соединения двух элементов сети.

Сеть вместе с концентратором представляет собой «общую шину ». Пакеты данных при передаче через концентратор будут доставлены на все компьютеры, подключенные к локальной сети.

Существует два вида концентраторов.

Пассивные концентраторы. Такие устройства отправляют полученный сигнал без его предварительной обработки.
Активные концентраторы (многопостовые повторители ). Принимают входящие сигналы, обрабатывают их и передают в подключенные компьютеры.

Коммутаторы

Коммутаторы необходимы для организации более тесного сетевого соединения между компьютером-отправителем и конечным компьютером. В процессе передачи данных через коммутатор в его память записывается информация о MAC-адресах компьютеров. С помощью этой информации коммутатор составляет таблицу маршрутизации, в которой для каждого из компьютеров указана его принадлежность определенному сегменту сети.

При получении коммутатором пакетов данных он создает специальное внутреннее соединение (сегмент ) между двумя своими Портами, используя таблицу маршрутизации. Затем отправляет пакет данных в соответствующий порт конечного компьютера, опираясь на информацию, описанную в заголовке пакета.

Таким образом, данное соединение оказывается изолированным от других портов, что позволяет компьютерам обмениваться информацией с максимальной скоростью, которая доступна для данной сети. Если у коммутатора присутствуют только два порта, он называется мостом.

Коммутатор предоставляет следующие возможности:

  • Послать пакет с данными с одного компьютера на конечный компьютер;
  • Увеличить скорость передачи данных.

Маршрутизаторы

Маршрутизатор по принципу работы напоминает коммутатор, однако имеет больший набор функциональных возможностей, Он изучает не только MAC, но и IP-адреса обоих компьютеров, участвующих в передаче данных. Транспортируя информацию между различными сегментами сети, маршрутизаторы анализируют заголовок пакета и стараются вычислить оптимальный путь перемещения данного пакета. Маршрутизатор способен определить путь к произвольному сегменту сети, используя информацию из таблицы маршрутов, что позволяет создавать общее подключение к Интернету или глобальной сети.
Маршрутизаторы позволяют произвести доставку пакета наиболее быстрым путем, что позволяет повысить пропускную способность больших сетей. Если какой-то сегмент сети перегружен, поток данных пойдет по другому пути,

Топология сети

Порядок расположения и подключения компьютеров и прочих элементов в сети называют сетевой топологией. Топологию можно сравнить с картой сети, на которой отображены рабочие станции, серверы и прочее сетевое оборудование. Выбранная топология влияет на общие возможности сети, протоколы и сетевое оборудование, которые будут применяться, а также на возможность дальнейшего расширения сети.

Физическая топология — это описание того, каким образом будут соединены физические элементы сети. Логическая топология определяет маршруты прохождения пакетов данных внутри сети.

Выделяют пять видов топологии сети:

  • Общая шина;
  • Звезда;
  • Кольцо;

Общая шина

В этом случае все компьютеры подключаются к одному кабелю, который называется шиной данных. При этом пакет будет приниматься всеми компьютерами, которые подключены к данному сегменту сети.

Быстродействие сети во многом определяется числом подключенных к общей шине компьютеров. Чем больше таких компьютеров, тем медленнее работает сеть. Кроме того, подобная топология может стать причиной разнообразных коллизий, которые возникают, когда несколько компьютеров одновременно пытаются передать информацию в сеть. Вероятность появления коллизии возрастает с увеличением количества подключенных к шине компьютеров.

Преимущества использования сетей с топологией «общая шина » следующие:

  • Значительная экономия кабеля;
  • Простота создания и управления.

Основные недостатки:

  • вероятность появления коллизий при увеличении числа компьютеров в сети;
  • обрыв кабеля приведет к отключению множества компьютеров;
  • низкий уровень защиты передаваемой информации. Любой компьютер может получить данные, которые передаются по сети.

Звезда

При использовании звездообразной топологии каждый кабельный сегмент, идущий от любого компьютера сети, будет подключаться к центральному коммутатору или концентратору, Все пакеты будут транспортироваться от одного компьютера к другому через это устройство. Допускается использование как активных, так и пассивных концентраторов, В случае разрыва соединения между компьютером и концентратором остальная сеть продолжает работать. Если же концентратор выйдет из строя, то сеть работать перестанет. С помощью звездообразной структуры можно подключать друг к другу даже локальные сети.

Использование данной топологии удобно при поиске поврежденных элементов: кабеля, сетевых адаптеров или разъемов, «Звезда » намного удобнее «общей шины » и в случае добавления новых устройств. Следует учесть и то, что сети со скоростью передачи 100 и 1000 Мбит/с построены по топологии «звезда ».

Если в самом центре «звезды » расположить концентратор, то логическая топология изменится на «общую шину».
Преимущества «звезды »:

  • простота создания и управления;
  • высокий уровень надежности сети;
  • высокая защищенность информации, которая передается внутри сети (если в центре звезды расположен коммутатор ).

Основной недостаток - поломка концентратора приводит к прекращению работы всей сети.

Кольцевая топология

В случае использования кольцевой топологии все компьютеры сети подключаются к единому кольцевому кабелю. Пакеты проходят по кольцу в одном направлении через все сетевые платы подключенных к сети компьютеров. Каждый компьютер будет усиливать сигнал и отправлять его дальше по кольцу.

В представленной топологии передача пакетов по кольцу организована маркерным методом. Маркер представляет собой определенную последовательность двоичных разрядов, содержащих управляющие данные. Если сетевое устройство имеет маркер, то у него появляется право на отправку информации в сеть. Внутри кольца может передаваться всего один маркер.

Компьютер, который собирается транспортировать данные, забирает маркер из сети и отправляет запрошенную информацию по кольцу. Каждый следующий компьютер будет передавать данные дальше, пока этот пакет не дойдет до адресата. После получения адресат вернет подтверждение о получении компьютеру-отправителю, а последний создаст новый маркер и вернет его в сеть.

Преимущества данной топологии следующие:

  • эффективнее, чем в случае с общей шиной, обслуживаются большие объемы данных;
  • каждый компьютер является повторителем: он усиливает сигнал перед отправкой следующей машине, что позволяет значительно увеличить размер сети;
  • возможность задать различные приоритеты доступа к сети; при этом компьютер, имеющий больший приоритет, сможет дольше задерживать маркер и передавать больше информации.

Недостатки:

  • обрыв сетевого кабеля приводит к неработоспособности всей сети;
  • произвольный компьютер может получить данные, которые передаются по сети.

Протоколы TCP/IP

Протоколы TCP/IP (Transmission Control Protocol/Internet Protocol — Протокол управления передачей данных/Интернет протокол ) являются основными межсетевыми протоколами и управляют передачей данных между сетями разной конфигурации и технологии. Именно это семейство протоколов используется для передачи информации в сети Интернет, а также в некоторых локальных сетях. Семейство протоколов TPC/IP включает все промежуточные протоколы между уровнем приложений и физическим уровнем. Общее их количество составляет несколько десятков.

Основными среди них являются:

  • Транспортные протоколы: TCP — Transmission Control Protocol (протокол управления передачей данных ) и другие — управляют передачей данных между компьютерами;
  • Протоколы маршрутизации: IP — Internet Protocol (протокол Интернета ) и другие — обеспечивают фактическую передачу данных, обрабатывают адресацию данных, определяет наилучший путь к адресату;
  • Протоколы поддержки сетевого адреса: DNS — Domain Name System (доменная система имен ) и другие — обеспечивает определение уникального адреса компьютера;
  • Протоколы прикладных сервисов: FTP — File Transfer Protocol (протокол передачи файлов ), HTTP — HyperText Transfer Protocol (Протокол передачи гипертекста), TELNET и другие — используются для получения доступа к различным услугам: передаче файлов между компьютерами, доступу к WWW, удаленному терминальному доступу к системе и др.;
  • Шлюзовые протоколы: EGP — Exterior Gateway Protocol (внешний шлюзовый протокол ) и другие — помогают передавать по сети сообщения о маршрутизации и информацию о состоянии сети, а также обрабатывать данные для локальных сетей;
  • Почтовые протоколы: POP — Post Office Protocol (протокол приема почты ) — используется для приема сообщений электронной почты, SMPT Simple Mail Transfer Protocol (протокол передачи почты ) — используется для передачи почтовых сообщений.

Все основные сетевые протоколы (NetBEUI, IPX/SPX и ТСРIР ) являются маршрутизируемыми протоколами. Но вручную приходится настраивать лишь маршрутизацию ТСРIР. Остальные протоколы маршрутизируются операционной системой автоматически.

IP-адресация

При построении локальной сети на основе протокола TCP/IP каждый компьютер получает уникальный IP-адрес, который может назначаться либо DHCP-сервером — специальной программой, установленной на одном из компьютеров сети, либо средствами Windows, либо вручную.

DHCP-сервер позволяет гибко раздавать IP-адреса компьютерам и закрепить за некоторыми компьютерами постоянные, статические IP-адреса. Встроенное средство Windows не имеет таких возможностей. Поэтому если в сети имеется DHCP-сервер, то средствами Windows лучше не пользоваться, установив в настройках сети операционной системы автоматическое (динамическое ) назначение IP-адреса. Установка и настройка DHCP-сервера выходит за рамки этой книги.

Следует, однако, отметить, что при использовании для назначения IP-адреса DHCP-сервера или средств Windows загрузка компьютеров сети и операции назначения IP-адресов требует длительного времени, тем большего, чем больше сеть. Кроме того, компьютер с DHCP-сервером должен включаться первым.
Если же вручную назначить компьютерам сети статические (постоянные, не изменяющиеся ) IP-адреса, то компьютеры будут загружаться быстрее и сразу же появляться в сетевом окружении. Для небольших сетей этот вариант является наиболее предпочтительным, и именно его мы будем рассматривать в данной главе.

Для связки протоколов TCP/IP базовым является протокол IP, так как именно он занимается перемещением пакетов данных между компьютерами через сети, использующие различные сетевые технологии. Именно благодаря универсальным характеристикам протокола IP стало возможным само существование Интернета, состоящего из огромного количества разнородных сетей.

Пакеты данных протокола IP

Протокол IP является службой доставки для всего семейства протоколов ТСР-iР. Информация, поступающая от остальных протоколов, упаковывается в пакеты данных протокола IP, к ним добавляется соответствующий заголовок, и пакеты начинают свое путешествие по сети

Система IP-адресации

Одними из важнейших полей заголовка пакета данных IP являются адреса отправителя и получателя пакета. Каждый IP-адрес должен быть уникальным в том межсетевом объединении, где он используется, чтобы пакет попал по назначению. Даже во всей глобальной сети Интернет невозможно встретить два одинаковых адреса.

IP-адрес, в отличие от обычного почтового адреса, состоит исключительно из цифр. Он занимает четыре стандартные ячейки памяти компьютера — 4 байта. Так как один байт (Byte) равен 8 бит (Bit), то длина IP-адреса составляет 4 х 8 = 32 бита.

Бит представляет собой минимально возможную единицу хранения информации. В нем может содержаться только 0 (бит сброшен ) или 1 (бит установлен ).

Несмотря на то, что IP-адрес всегда имеет одинаковую длину, записывать его можно по-разному. Формат записи IP-адреса зависит от используемой системы счисления. При этом один и тот же адрес может выглядеть совершенно по-разному:

Формат числовой записи

Значение

Двоичный (Binary)

Шестнадцатеричный (Hexadecimal)

0x86180842

Десятичный (Decimal)

2249721922

Точечно-десятичный (Dotted Decimal)

134.24.8.66

Двоичное число 10000110 преобразовывается в десятичное следующим образом: 128 + 0 + 0 + 0 + 0 + 4 + 2 + 0 =134.
Наиболее предпочтительным вариантом, с точки зрения удобства чтения человеком, является формат написания IP-адреса в точечно-десятичной нотации. Данный формат состоит из четырех десятичных чисел, разделенных точками. Каждое число, называемое октетом (Octet), представляет собой десятичное значение соответствующего байта в IP-адресе. Октет называется так потому, что один байт в двоичном виде состоит из восьми бит.

При использовании точечно-десятичной нотации записи октетов в адресе IP следует иметь в виду следующие правила:

  • Допустимыми являются только целые числа;
  • Числа должны находиться в диапазоне от 0 до 255.

Старшие биты в IP-адресе, расположенные слева, определяют класс и номер сети. Их совокупность называется идентификатором подсети или сетевым префиксом. При назначении адресов внутри одной сети префикс всегда остается неизменным. Он идентифицирует принадлежность IP-адреса данной сети.

Например, если IP-адреса компьютеров подсети 192.168.0.1 — 192.168.0.30, то первые два октета определяют идентификатор подсети — 192.168.0.0, а следующие два — идентификаторы хостов.

Сколько именно бит используется в тех или иных целях, зависит от класса сети. Если номер хоста равен нулю, то адрес указывает не на какой-то один конкретный компьютер, а на всю сеть в целом.

Классификация сетей

Существует три основных класса сетей: А, В, С. Они отличаются друг от друга максимально возможным количеством хостов, которые могут быть подключены к сети данного класса.

Общепринятая классификация сетей приведена в следующей таблице, где указано наибольшее количество сетевых интерфейсов, доступных для подключения, какие октеты IP-адреса используются для сетевых интерфейсов (*), а какие - остаются неизменяемыми (N).

Класс сети

Наибольшее количество хостов

Изменяемые октеты IP — адреса , используемые для нумерации хостов

16777214

N *.*.*

65534

N.N.*.*

N.N.N.*

Например, в сетях наиболее распространенного класса С не может быть более 254 компьютеров, поэтому для нумерации сетевых интерфейсов используется только один, самый младший байт IP-адреса. Этому байту соответствует крайний правый октет в точечно-десятичной нотации.

Возникает законный вопрос: почему к сети класса С можно подключить только 254 компьютера, а не 256? Дело в том, что некоторые внутрисетевые адреса IP предназначены для специального использования, а именно:

О — идентифицирует саму сеть;
255 — широковещательный.

Сегментирование сетей

Адресное пространство внутри каждой сети допускает разбиение на более мелкие по количеству хостов подсети (Subnets ). Процесс разбиения на подсети называется также сегментированием.

Например, если сеть 192.168.1.0 класса С разбить на четыре подсети, то их адресные диапазоны будут следующими:

  • 192.168.1.0-192.168.1.63;
  • 192.168.1.64-192.168.1.127;
  • 192.168.1.128-192.168.1.191;
  • 192.168.1.192-192.168.1.255.

В данном случае для нумерации хостов используется не весь правый октет из восьми бит, а только 6 младших из них. А два оставшихся старших бита определяют номер подсети, который может принимать значения от нуля до трех.

Как обычный, так и расширенный сетевые префиксы можно идентифицировать с помощью маски подсети (Subnet Mask ), которая позволяет также отделить в IP-адресе идентификатор подсети от идентификатора хоста, маскируя с помощью числа ту часть IP-адреса, которая идентифицирует подсеть.

Маска представляет собой комбинацию чисел, по внешнему виду напоминающую IP-адрес. Двоичная запись маски подсети содержит нули в разрядах, интерпретируемых как номер хоста. Остальные биты, установленные в единицу, указывают на то, что эта часть адреса является префиксом. Маска подсети всегда применяется в паре с IP-адресом.

При отсутствии дополнительного разбиения на подсети, маски стандартных классов сетей имеют следующие значения:

Класс сети

Маска

двоичная

точечно-десятичная

11111111.00000000.00000000.00000000

255.0.0.0

11111111.11111111.00000000.00000000

255.255.0.0

11111111.11111111.11111111.00000000

255.255.255.0

Когда используется механизм разбиения на подсети, маска соответствующим образом изменяется. Поясним это, используя уже упомянутый пример с разбиением сети класса С на четыре подсети.

В данном случае два старших бита в четвертом октете IP-адреса используются для нумерации подсетей. Тогда маска в двоичной форме будет выглядеть следующим образом: 11111111.11111111.11111111.11000000, а в точечно-десятичной -255.255.255.192.

Диапазоны адресов частных сетей

Каждый компьютер, подключенный к сети, имеет свой уникальный IP-адрес. Для некоторых машин, например, серверов, этот адрес не изменяется. Такой постоянный адрес называется статическим (Static). Для других, например, клиентов, IP-адрес может быть постоянным (статическим) или назначаться динамически, при каждом подключении к сети.

Чтобы получить уникальный статический, то есть постоянный адрес IP в сети Интернет, нужно обратиться в специальную организацию InterNIC — Internet Network Information Center (Сетевой информационный центр Интернета ). InterNIC назначает только номер сети, а дальнейшей работой по созданию подсетей и нумерации хостов сетевой администратор должен заниматься самостоятельно.

Но официальная регистрация в InterNIC с целью получения статического IP-адреса обычно требуется для сетей, имеющих постоянную связь с Интернетом. Для частных сетей, не входящих в состав Интернета, специально зарезервировано несколько блоков адресного пространства, которые можно свободно, без регистрации в InterNIC, использовать для присвоения IP-адресов:

Класс сети

Количество доступных номеров сетей

Диапазоны IP — адресов , используемые для нумерации хостов

10.0.0.0 — 10.255.255.255

172.16.0.0-172.31.255.255

192.168.0.О-192.168.255.255

LINKLOCAL

169.254.0.0-169.254.255.255

Однако эти адреса используются только для внутренней адресации сетей и не предназначены для хостов, которые напрямую соединяются с Интернетом.

Диапазон адресов LINKLOCAL не является классом сети в обычном понимании. Он используется Windows при автоматическом назначении личных адресов IP компьютерам в локальной сети.

Надеюсь Вы теперь имеете представление о локальной сети!

Локальную вычислительную сеть еще называют местной вычислительной сетью, так как она служит для объединения сетевых устройств в небольшую группу. Объединение сетевых устройств может осуществляться не только с помощью кабелей, но и с помощью беспроводных технологий.

Назначение ЛВС

Объеденение сетевых устройств - вот ее главное предназначение. С помощью ЛВС пользователи могут обмениваться данными, подключаться к общим принтерами и распечатывать документы, хранить данные на общем сервере или на своем компьютере, с возможностью доступа к ним других пользователей ЛВС.

Объем ЛВС

Как правило, локальная вычислительная сеть распространяется на офис, дом, помещение или здание. ЛВС может объединить даже несколько зданий, однако, если использовать витую пару для объединения зданий, расстояние (длина кабеля) не должно превышать 100 метров. Иначе могут возникнуть задержки в передачи данных. Витую пару редко преминяют для соединения двух и более зданий в одну ЛВС. Чаще всего, для выполнения этой задачи используют оптический кабель и соответствующее оборудование.

Виды ЛВС

Одноранговая локальная сеть

Одноранговую локальную сеть применяют для объединения небольшого количество компьютеров (до 10 штук). При одноранговой локальной сети, каждый пользователь своего компьютера принимает решение о доступе к данным для других пользователей сети. Такую ЛВС еще называют равноправной.

Локальная сеть на основе сервера

Это более распрастраненный вид ЛВС, более производительный и надежный. Сервером может служить как обычный компьютер, так и специальный, характеристики и програмное обеспечение которого предназначены специально для этих целей. Сервер может выполнять массу функций: хранить в себе данные пользователей ЛВС, назначать права и ограничивать доступ пользователям, при передачи сообщений определять оптимальные маршруты и многое другое.

Топология/структура ЛВС

Топология локальной вычислительной сети определяет структуру, то как компьютеры будут соединяться друг с другом.

1. Шина - это последовательное соединение компьютеров в сеть, с помощью общего кабеля.

2. Звезда - это параллельное соединение компьютеров. Каждый компьютер подсоединяется кабелем к одному устройству - концентратору или хабу.

3. Кольцо - компьютеры соединены кабелем в неразрывное кольцо. Выход из строя любого компьютера или обрыв кабеля - приведет к неработоспособности ЛВС.